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FOREWORD

This report, published in two volumes, was prepared in the Nuclear
Weapons Effects Division, U. S. Army Engineer Waterways Experiment Station,
under the sponsorship of the Defense Atomic Support Agency as part of
Nuclear Weapons Effects Research Subtask SC210 (formerly Subtasks R13B0O10
and RSS3210010), "Response of Buried Structures to Ground Shock." The work
was accomplished during the period November 1966 through January 1969.
During this time, Mr. G. L. Arbuthnot, Jr., was Chief of the Nuclear Weapons
Effects Division, and Mr, W. J. Flathau was Chief of the Protective Struc-
tures Branch.

This report was prepared by COL Guy E. Jester, CE, and is essentially
a thesis submitted in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Civil Engineering to the University of
Illinois, Urbana, Illinois.

Director~ of the Waterways Experiment Station during the preparation
and publication of this report were COL John R. Oswalt, Jr., CE, and
COL Levi A. Brown, CE. Technical Directors were Mr. J. B. Tiffany and

Mr. F. R. Brown.






AN EXPERIMENTAL INVESTIGATION OF SOIL-STRUCTURE
INTERACTION IN A COHESIVE SOIL

Guy Earlscort Jester, Ph. D.
Department of Civil Engineering
University of Illinois, 1968
ABSTRACT

This study was an experimental investigation of the behavior of
an idealized structure buried at various depths in a compacted cohe-
sive soil (buckshot clay, water content = 26%). Eight static and 20
dynamic plane-wave loadingzs up to 310 psi were conducted.

The cylindrical test devices (5 inches high and 6 inches in diem-
eter) were oriented vertically and their stiffness relative to the
soil was varied. In addition a device whose top could be extended and
contracted hydraulically was buried at various depths and the relation
between load and deformation changes was studied at static overpres-
sures of 37.5 and 75 psi.

At low static and dynamically applied surface pressures
(PS = 37.5 psi) and a depth of burial of one structure diameter
(H/B = 1), the amount of active arching depended upon the stiffness
of the structure relative to that of the soil, Under these condi-
tions, it was possible to relieve practically all the overpressure on
the test structure Just by decreasing its stiffness. At E/B =1,
the structure behaved as if it were fully buried &nder dynamic and

static pressures less than L0 psi.



As the surface pressure was increased, the amount of arching at
H/B > 1 Dbecame more dependent upon the shear strength of the soil.

When the scaled depth of burial was increased to H/B =3 at
surface pressures in the 150- to 250-psi range, the differential
pressure, as calculated by subtracting the average pressure acting on
the top of the device from the surface pressure at the same time in-
terval, increased but it did not increase as much as the load on the
structure. At Ps = 150 psi wunder dynamic conditions the differen=-
tial pressure was 32 psi or 2.5 times the shear strength of the soil
as determined by unconfined compression tests (qu/2) as compared to
25 psi or 1.4 times the shear strength of the soil at H/B =1 . When
the surface pressure was increased to 240 psi under dynamic conditions
at H/B = 3 , the differential pressure was only 35 psi. Under static
conditions, the differential pressure was 37 psi at PS = 150 psi and
54 psi at Ps = 175 psi. When the static surface pressure was in-
creased to 240 psi, the differential pressure only increased to 58 psi
or 5.2 times the shear strength of the soil. Once the strength of the
soil at a particular depth had been fully developed, increasing the
surface pressure had very little effect on the amount of arching.

There was a transition zone between those surface pressures at
which the amount of arching was determined by relative structure
flexibility and the pressure at which it was more dependent upon soil

strength. The pressures which limited the transition zone depended




=

upon depth of burial and the time in which the load was applied. é
Within the transition zone, the role played by the relative stiffness
changed gradually.

Based on the very limited amount of data developed in this test
program (Ps < 65 psi and H/B = 1), passive arching does not appear to
be sensitive to structure stiffness. Once the relative structure
stiffness (KI'/KS) exceeded a value of approximately 4, there was no
increase in the amount of arching with an increase in the structure
stiffness. The maximum scaled differential pressure (2AP/q_u) never
exceeded a value of 1.1.

Regardless of the stiffness of the structure or the state of
arching considered, static arching curves produced by lowering or
raising the top of the structure by internal means could not be used
to estimate the amount of arching that a similar spring test device
would induce under static or dynamic external loads. In addition it
was found that static arching data produced with the spring device
could not be used to predict the design loads on a comparable struc-
ture at dynamically applied surface pressures in excess of 4O-70 psi,

depending on the d=~pth of burial.
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AcCC

AF

CEC

CIC

NOTATION

Cavity radius

A constant

Accelerometer; when followed by a number it signifies a
particular accelerometer

Amplification factor

Width of tunnel

Trapdoor diameter; or diameter of test device
Baldwin-Lima-Hamilton

Coefficient of damping

Cohesion; or damping; or propagation velocity of the
peak soil stress between any two points of interest
Critical damping

Consolidated Electrodynamics Corporation

Computer Instruments Corporation

Deflection of base of test device

Deflection of top of test device or trapdoor

Gage diameter; or when followed by & number, & deflection
gage for which the number identifies its location and
instrumentation channel

Defense Atomic Support Agency

Soil deflection at 35-in. level

Total deflection of test device (db + dt)
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IP

Modulus of elasticity, Young's modulus

Modulus of gage

Modulus of solid

Electromotive force

Frequency

Force acting on top of the test device at any time; or an
inst:umentation channel recording the force acting on the
top of the test device

Force acting on top of test device at time ¢
Acceleration of gravity

Specific gravity

Depth of burial to top of an arch cavity

Depth of turial from soil surface to top of structure;
or a horizontal pressure gage

Gage thickness

Pressure inside the test device under dynamic test
conditions

Any spring constant

Ratio of horizontal to vertical soil pressure; or any
spring constant

Spring constant of any individual spring or spring

segment

Spring constant of two or more springs in parallel

ix



KH Kilohertz
Ks Soil stiffness
KT Test device or cylinder stiffness
Kl ,K2,K3 Spring constant of a particular spring segment

LL Liquid limit of soil

LVDT Linear variable differential transformer
m Mass
M Constrained modulus
MS Sc’1l modulus
MT Modulus of test device

MIT Massachusetts Institute of Technology
n Number of springs
p Vertical or internal stress
p. Stress acting on structure roof

Pressure

P Soll pressure at 35-in. level

Ps Lpproximate soil pressure at 35-in. level

PB Pressure acting on the test chamber base

PC Pressurc acting on inside of test device

PI Pressure inside test device

Ps Surface pressure; or bonnet pressure gage

PT Average force per unit area acting on top of test device



PI

SBLG
SDF

SE

Bonnet pressure measured by Norwood gage on east side
of bonnet

Plasticity index

Bonnet pressure measured by Norwood gage located on
north side of bonnet

Bonnet pressure measured by Norwood gage located on west
side of bonnet

Horizontal stress; or amount of stress in excess of
free-field stress acting on a gage

Unconfined compressive strength of soil

Field stress

Distance from center of gage; radius

Radius of particular interest

Symbol signifying an accelerometer, usually followed by
a number identifying its location and instrumentation
channel

Small Blast Load Generator

Single degree of freedom

Soil stress gage; when followed by a number, it signifies
a particular soil stress gage

Time

Time of soil failure

Rise time to first pressure peak (steep part of pressure

trace)
xi



yd

Rise time to maximum pressure (no reflection)

Rise time at surface

Period of structure; or specific thrust

Time of arrival

Deflection of soil at any depth

Deflection of roof

Vertical pressure exerted on arch

Water content of soil (in percent of dry weight)

U. s. Army" Engineer Waterways Experiment Station
Coordinates

Deflection of top of test device at time +t

Velocity of top of test device at time ¢

Absolute acceleration of top of test device at time ¢t
A symbol signifying an accelerometer, usually followed by
a number identifying its location and instrumentation
channel

A constant; or angle between plane of maxinrum shear
and vertical axis

A constant determined by the ratio of the loaded area to
its perimeter

Specific weight of soil

Dry density of soil

Differential deflection (DT - DS)

xii



Differential pressure (P& - F)
Axial strain; or an instrumentation channel recording
strain

Strain rate

Angle between direction of maximum normal stress and
vertical axis

Poisson's ratio

Wet density of soil

Stress

Horizontal stress

Maximum stress

Radial stress

Vertical stress

Stress acting parallel to the x axis
Stress acting parallel to the y axis
Vertical stress

All-around confining stress
Circumferential stress

Shearing stress

Shearing stress acting on the hv plane
Maximum shear stress

Shearing stress acting on the xy plane
Angle of internal friction

Tangent angle to a soil arch

One-dimensional compression test device
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CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

The art and science of designing underground structures to re-
sist the effects of nuclear detonations is plagued by many unknowns.
It is therefore inherently difficult to design economic, hardened
missile complexes, command and control facilities, logistics in-
stallations, and other strategic structures with an assured degree
of protection. In addition, it is practically impossible to deter-
mine the degree of hardness of existing facilities without testing
them or modeled facilities to destruction. Furthermore, the design
of fortifications and protective structures to resist the effects
of even conventional explosives is not well formulated.

One of the major facets of the design problem which has caused
difficulty is the determination of the loads which act upon a buried
structure. There are many elenents involved, not the least of which
is the determination of means to estimate or predict the free-field
stresses and ground motions transmitted through the soil to the
vicinity of the structure.

Once the free-field stresses and/or strains reach the area
where they begin to be influenced by the presence of the structure,

the designer must determine how the loads which act on the buried



structure are influenced by the interaction between the structure
and the surrounding soil.

Unlike the load systems generally assumed in the design of
surface structures, the loading and response of buried structures
must not be treated as independent phenomena. There is considerable
evidence (Voellmy; Terzaghi, 1943; Taylor; Spangler, 1956; et;c.):L to
indicate that a structure stiffer than the medium that it is buried
in will tend to attract load. On the other hand, stress will be
diverted around or away from a structure which is less stiff than
the surrounding medium. This transfer of load to or away from a
structure is one of several phenomena which are normally termed
"soil arching." It generally is called "passive arching" when the
structure is loaded above the free-field stress and "active arching"
when the structure is acted on by stresses below the free-field
stress. The load system causes the structure to deform which
changes the deformation pattern in the soil and this, in turn,
changes the loads which reach the structure. The transfer of load
from the surrounding soil to the structure may be thought of as a
cyclic or iteration process, i.e., the applied load causes struc-
tural deformations, the deformations alter the form of the load,

etc. Also involved in the determination of the design load is che

e Authors and dates refer to bibliography in Volume II.



length of time the load impinges on the structure and the area of
the structure involved, and thus the total energy transfer involved.
This is especially true under dynamic loading conditions. Not only
the magnitude of the load, but also the distribution of this load
are affected by soil-structure interaction. Thus, the load system
acting on a buried structure can be greatly affected by the de-

formations of the structure itself.

1.2 STATEMENT OF THE PROBLEM

Neither soil arching nor the interaction of an undergound
structure and its surrounding medium is well understood at pres-
ent. These are not new problems, but only within the past several
years have such problems associated with protective structures
been well defined (Newmark and Haltiwanger). However, engineers
(Engesser; Janssen; Terzaghi, 1936c) have recognized their ex-
istence in various forms for almost a hundred years. Arching in
silos and grain bins has received extensive study (Airy; Jamieson;
Jaky; Jenike). The stability of tunnels and the design of sub-
surface structures have always been influenced to some extent by
soil arching and the interaction phenomena (Engesser; Terzaghi,
1919). Much of the early research was accomplished using the
deadweight of the material and/or very low surface pressures

(Engesser; Terzaghi, 1936b). Consequently, the deformations were



small and only static forces were considered.

With the advent of nuclear weapons and the need for providing
hardened facilities or determining the degree of hardness of
existing structures, an analysis procedure was needed which could
deal with large structural and medium deformations as well as the
additional effects of dynamic forces. There was also a need for pro=-
cedures to predict the enviromment to which structures and their con-
tents might be subjected by either air-induced or direct ground shock
or some combination thereof. Much work, as cited in Chapter 2, has
been accomplished in this field since World War II, but there are
still a multitude of unknowns in the state-of-the-art (Merritt and
Newmark).

Authors of design manuals and procedures often comment on the
lack of well-documented experimental and field data with which to
compare current procedures and analytical theories (Newmark and
Haltiwanger). In the latter category are a number of intricate
and complex theoretical codes and analytical procedures for
Jetermining loads on buried facilities (Aggarwal, et al.; Baron
and Parnes; Costantino, et al., 1964). The codes require a medium-
structure interaction mechanism and the input of various idealized
medium and structure parameters. To date authors of the various
codes and analytical techniques have had difficulty constructing a

mecnanism which realistically describes the problem and which



incorporates real soil and structure parameters.

Economies can be realized in the design of hardened structures
through a better understanding of soil-structure interaction. The
structure as well as its contents will be involved, since the
capability will exist to define more adequately the shock environ-
ment inside the structure. Savings could amount to 10 to 20 percent

of the total cost of a single hardened complex.

1.3 PURPOSE OF THE INVESTIGATION

The purpose of this investigation was to study in detail the
arching mechanism in cohesive soils and to determine how it is
influenced by structure stiffness, depth of burial, and surface
pressure.

Several corollary objectives were established:

1l. Determine if soil arching can exist in cohesive soils under
dynamic conditions.

2. If soil arching exists, determine the mechanism of load
transfer involved.

3. Determine the applicability of static trapdoor and similar
experiments to the dynamic arching problem.

4. Produce well-documented experimental data on the soil-
structure interaction problem under dynamic conditions to include:

the relative deformations involved; the size of the soil zone



involved in stress transfer; the influence of burial depth, surface
pressure, and structure stiffness on the extent of arching; the
amount of load transfer possible in a clay soil; and how structural
loading is influenced by the medium and depth of burial as well as
surface pressure,

5. Produce a means by which the experimental results will be
of immediate use to planners, designers, and analysts of strategic

structures.

1.4 DEFINITION OF SOIL ARCHING

In any study concerning soil arching a.nd/or soil=-structure
interaction, it is important for the author to define soil arching
as he uses the term and the role this arching plays in the loads
an underground structure experiences. For example, Wiehle has
stated that the interplay between the soil and structure, i.e.
the loading and response of structure and soil, as the stress wave
in the soil propagates past the structure is called structure-
medium or soil-structure interaction.

As previously discussed, soil-structure interaction may involve
not only soil arching but also reflections and diffractions of the
stress wave by the structure, the gross transfer of momentum between
the s0il and structure and vice versa, the redistribution of the

load from one portion of the structure to another, and the complete



loading and unloading of portions of the structure as they move
away from and into the soil boundary.

Soil arching, as it is defined for this study, is a physical
phenomenon in which differential soil deformations of sufficient
magnitude transfer loads from, to, or around one portion of the me-
dium to another portion of the medium. This transfer of load causes
the stresses in the affected portions of the medium to be different
from those which would have been present had no differential defor-
mations taken place.

Prior to the onset of the differential deformation, the soil
behaves like a mass possessing the properties of a continuous medium.
The most commonly discussed type of disturbance supporting soil
arching is that in which a differential deformation occurs at a
point in the medium at which either the proportional or ultimate
limit of the material's shear strength is exceeded. This is a
plasti~ type action. Of course, the amount of soil area involved
in this action has an effect on the amount of arching. The elastic
solution to the trapdoor problem shows that load transfer can take
place without the development of a general or gross yield condition
over a large area, Localized slippage planes or merely relative
deformations within the elastic range of the materials a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>